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Abstract

Improving data efficiency and generalization in robotic manipulation remains1

a core challenge. We propose a novel framework that leverages a pre-trained2

multimodal image-generation model as a world model to guide policy learning.3

Exploiting its rich visual-semantic representations and strong generalization across4

diverse scenes, the model generates open-ended future state predictions that inform5

downstream manipulation. Coupled with zero-shot low-level control modules,6

our approach enables general-purpose robotic manipulation without task-specific7

training. Experiments in both simulation and real-world environments demonstrate8

that our method achieves effective performance across a wide range of manipulation9

tasks with no additional data collection or fine-tuning.10
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Figure 1: Overview of the World4Omni framework. We propose World4Omni, which leverages
a pretrained multimodal image-generation model as a world model to guide low-level policy. Task
instructions are decomposed into subtasks, each of which is fed into the world model along with the
current scene image to generate a subgoal image depicting the scene after completing the current
subtask. Predicted future images can be transformed into point clouds, enabling the high-level world
model to adapt across different low-level policies. Object point matching validates the plausibility of
predicted future images and enables their translation into concrete robot actions. Finally, a low-level
policy is used to move the object from its initial position to its target position.
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1 Introduction11

General-purpose embodied intelligence has long been a central aspiration in AI and robotics re-12

search [1–3], aiming to develop versatile robotic agents capable of handling diverse real-world tasks.13

Despite recent advancements, generalization remains a critical challenge. To perform manipulation14

tasks, robots must perceive environments, interpret complex instructions, and execute appropriate15

actions. However, variability in environmental conditions, task instructions, object properties, and16

robot embodiments significantly impacts robotic performance and poses considerable difficulties17

for generalization [4–6]. Many existing manipulation methods exhibit strong performance when18

operating in scenarios similar to their training environments, yet they frequently fail in unseen con-19

texts [4, 7, 8]. Addressing these limitations typically involves two primary pathways: (1) increasing20

the volume and diversity of training data, and (2) developing techniques that enhance data efficiency.21

Foundation models, pretrained on massive datasets, have significantly enhanced generalization in22

robotic tasks [9–11]. One paradigm involves training end-to-end models that directly map visual23

observations and language instructions to low-level actions [12–15]. However, collecting robot action24

data remains costly and time-consuming [10]. Consequently, even the largest robotics datasets [16] are25

dwarfed by Internet-scale text and image corpora [17], limiting these methods’ capacity to generalize26

to novel tasks and scenarios [12–15]. An alternative paradigm adopts a hierarchical structure,27

leveraging Large Language Models (LLMs) and Vision-Language Models (VLMs), pretrained on28

extensive textual and visual data, to perform high-level planning and prediction before interfacing with29

low-level action modules [18–21]. Although LLMs and VLMs improve high-level generalization,30

their text-based outputs restrict flexibility when integrating with low-level action models. Initial31

works relied on predefined low-level skill libraries, limiting generalization to unseen tasks [22–24].32

Subsequent approaches introduced intermediate representations, yet their low-level policies still33

depend on additional action-labeled data, constraining overall generalizability [18, 19, 25].34

The ability of pre-trained foundation models to generate images has recently attracted widespread35

attention [26–28]. We found multimodal large-scale models trained on extensive web text–image data36

exhibit strong generalization across diverse scenarios, suggesting their suitability as a world model37

for robotic manipulation. Prior studies have shown that world models can substantially enhance data38

efficiency, thereby alleviating the generalization gaps caused by data scarcity in robotics [29–31].39

Other methods employ video-generation models as world models [25, 32–35]; yet, generating future40

videos requires far greater temporal consistency than generating future images, and current large41

pre-trained video-generation models fail to achieve zero-shot generalization in robotic manipulation42

tasks. As a result, the vast majority of these approaches still demand additional task-specific training.43

In this work, we employ a pre-trained foundation model as a world model to generate images44

depicting future object states. To mitigate inconsistencies in image outputs, we introduce a Vision-45

Language Model (VLM) as a Reflection Agent, which evaluates and refines these generated images.46

Additionally, we propose a Task Planner Agent that decomposes tasks into sequential subtasks,47

enhancing reasoning ability for long-range tasks. These predicted images can subsequently be48

transformed into point clouds via single-view depth estimation techniques [36]. As a result, our49

framework supports diverse input modalities for low-level modules—including current and predicted50

RGB images, point clouds, and structured representations derived from them (e.g., keypoints or51

object transformations). We evaluate our approach on representative manipulation tasks, assessing its52

zero-shot generalization both within hierarchical methods and against alternative paradigms.53

Overall, our main contributions are as follows.54

• We introduce a novel framework, World4Omni, capable of zero-shot, cross-embodiment55

generalization across diverse robotic manipulation tasks without any additional training.56

• We employ a pre-trained large-scale multimodal image-generation model as a world model,57

incorporating an agent-based collaborative reflection process to iteratively refine imagined58

future scenes, thereby generating more plausible and consistent subgoal images.59

• Our framework supports plug-and-play integration of low-level modules designed for differ-60

ent input modalities, showcasing its versatility and strong adaptability.61

• We demonstrate the zero-shot generalization and cross-embodiment capabilities of our62

framework by applying it to diverse robotic manipulation tasks in simulation and the real63

world, achieving favorable results across the evaluations.64
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2 Related Work65

2.1 World Models for Robotic Manipulation66

Early work on world models for robotic manipulation primarily focused on learning visual dynamics67

directly from raw pixel observations to predict future frames [37, 38]. Subsequently, latent-space68

world models were introduced to encode the underlying physical dynamics compactly. For instance,69

dreamer and its variants [29, 30, 39, 31] learn internal latent-state representations and optimize robot70

behavior by simulating or "imagining" future trajectories. These latent-space models enhance data71

efficiency by augmenting limited real-world data with imagined experiences. Recent studies have72

also explored video-generation models as world models [32, 25, 33, 33, 34]. Although promising,73

such models require high temporal consistency, and existing pre-trained, large-scale video-generation74

models often fail to generalize effectively to novel scenarios [25, 32–35], thus limiting their practical75

application in diverse robotic manipulation tasks [40, 35]. In this work, we use pre-trained, large-76

scale image-generation models as world models. By predicting only essential subgoal images at key77

frames, our method avoids the temporal consistency issues faced by video-generation approaches and78

achieves robust generalization across various robotic manipulation scenarios.79

2.2 Reflection in Foundation Models80

Reflection mechanisms, which enable generative models to iteratively critique and refine their outputs,81

have recently attracted growing attention as a promising method for enhancing robotic manipulation82

capabilities. In generative modeling, recent studies demonstrate that incorporating self-feedback or83

iterative critiques substantially improves the quality and coherence of generated outputs [41–43].84

Notable examples include CritiqueLLM [44] and Idea2Img [45], which showcase how reflective85

feedback loops facilitate progressive refinement and correction of initial predictions. Extending86

these reflective approaches into robotics, several recent frameworks [46, 47] integrate self-reflection87

into robotic task planning and action execution, enabling robotic agents to dynamically identify88

and correct errors, thereby progressively enhancing their performance during tasks. Moreover,89

additional studies have advanced this concept by incorporating multimodal reflection mechanisms,90

effectively bridging high-level cognitive reasoning with low-level motor control adjustments. This91

multimodal integration significantly improves robot robustness and adaptability, enabling robots to92

better manage uncertainties and effectively generalize across diverse manipulation scenarios and93

real-world conditions [48–50].94

2.3 Foundation Models Paradigms for Robotic Manipulation95

Recent advances in foundation models have significantly influenced robotics, especially in robotic96

manipulation tasks, by leveraging LLMs and VLMs for high-level planning and decision-making [51–97

55]. Current research can be broadly categorized into three main paradigms. The first paradigm98

employs foundation models to guide robotic execution by linking high-level instructions to predefined99

low-level skills. Approaches such as SayCan [22], PALM-E [24], and Code as Policies [23] utilize100

LLM outputs combined with skill libraries or executable code generation to bridge high-level planning101

and robotic actions. However, these methods often struggle to generalize predefined skill sets. The102

second paradigm introduces intermediate visual representations or subgoals to enhance generalization103

and task execution. Methods such as ReKep [21], SuSIE [18], 3D-VLA [19], and Gen2Act [20] use104

foundation models to generate intermediate goals, like keypoints, subgoal images, or demonstration105

videos, that guide robotic policies, thus improving adaptability to novel scenarios. The third paradigm106

directly integrates foundation models into end-to-end frameworks that map visual and linguistic107

inputs directly to continuous low-level robot actions. Notable methods include RT-1 [12], RT-2 [13],108

OpenVLA [14], and RDT-1B [15], which bypass hierarchical structuring to provide more flexible109

and generalized manipulation capabilities through joint training on large-scale demonstration data110

and multimodal tasks.111

3 Method112

Our framework is illustrated in Figure 2. In this section, we provide a detailed explanation of problem113

formulation (Sec. 3.1), agent collaboration (Sec. 3.2), reflective world model (Sec. 3.3), and low-level114

policy (Sec. 3.4).115
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Figure 2: An instantiation of our framework. Agent Collaboration involves the Task Planner,
Scene Dreamer, and Reflector agents working together (yellow). The Scene Dreamer and Reflector
together form the Reflective World Model, which produces subgoal images and corresponding point
clouds (blue). The Low-level Policy consumes the current and goal observations and outputs the
robot actions (green).

3.1 Problem Formulation116

Given a single-view RGB image I ∈ RH×W×3, a point cloud P ∈ RN×3, and a natural language task117

description L , the objective is to generate an action sequence {a}i that completes the manipulation118

task described in L.119

The Task Planner Agent takes an RGB image I and a task description L as input and outputs a120

sequence of subtask descriptions {L}i.121

The World Model receives an RGB image I and a subtask description Li to produce a subgoal122

image I ′ ∈ RH×W×3 and a subgoal depth map D′ ∈ RH×W×1. The resulting future point cloud P ′123

is obtained by back-projecting D′.124

The Low-level Policy is provided with the current observation O = (I,P) and the future observation125

O′ = (I ′,P ′), and outputs a sequence of actions {a}i to drive the system from O to O′.126

Notably, the low-level policy may use any non-empty subset of the modalities from the current127

observation O = (I,P) (i.e., I, P , or both) and any non-empty subset from the target observation128

O′ = (I ′,P ′) (i.e., I ′, P ′, or both) to produce the action sequence {a}i. This shows our framework129

is compatible with a variety of different low-level policy settings.130

3.2 Agent Collaboration131

Given the user’s task description L and a scene image I, we employ a VLM (GPT-o4-mini-high) as132

the Task Planner Agent to decompose the task into a sequence of subtask descriptions {Li} in text133

form. For example, given the initial scene image and the instruction "Put the tomato in the pan", the134

Task Planner Agent might decompose the task into the following subtasks: (1) L0: "Move the tomato135

vertically upward"; (2) L1: "Move the tomato horizontally to the right, positioning it above the pan";136

(3) L2: "Move the tomato downward into the pan".137

At the start, we input the initial image I0 (specifically, I0 = I) along with its corresponding subtask138

description L0 into the Reflective World Model. The Reflective World Model consists of a Scene139

Dreamer Agent and a Reflector Agent (detailed in Sec. 3.3), and produces a predicted future scene140
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image I1. We refer to each such predicted future scene image as a subgoal image. By the same141

process, for each input image Ii together with its subtask description Li, the Reflective World Model142

outputs the subgoal image Ii+1. As illustrated in Figure 2, the initial desktop image and the first143

subtask instruction L0 are input to the World Model, which outputs a subgoal image showing the144

tomato moving upward. This subgoal image, together with the next subtask instruction L1, is then145

fed into the World Model to produce the next subgoal image of the tomato moving to the right, and146

this process continues until the task is complete.147

Subgoal images serve two roles: (1) they can be used directly by a low-level policy or converted into148

another modality for a low-level policy (see Sec. 3.3); and (2) they provide the input for the next149

Scene Dreamer Agent to generate the subsequent subgoal image. By using subgoal images rather150

than ground-truth scene images, we avoid issues where objects of interest are occluded by the robot151

arm or gripper, allowing the Reflective World Model to output more consistent images.152

3.3 Reflective World Model153

The Reflective World Model consists of a Scene Dreamer Agent, which leverages a large-scale154

pre-trained image-generation model, and a Reflector Agent, which is built on a VLM. The Scene155

Dreamer Agent receives the scene image Ii and the subtask description Li from the Task Planner,156

then employs GPT-4o to generate an image of the future scene Ii+1. The Reflector Agent employs157

GPT-o4-mini-high to understand both the generated image and the subtask semantics, evaluating158

whether the output of the Scene Dreamer Agent is consistent. If the image passes this check, the159

Reflector emits a success signal; if not, it produces a revised prompt to steer the Scene Dreamer160

toward a more accurate generation.161

Taking the future scene generation in Fig. 2 as an example, if the output of Scene Dreamer Agent162

shows incorrect movement of the target object or disregards the surrounding context, the Reflector163

Agent issues a revised prompt L′
i and submits it along with the current scene image Ii to the164

Scene Dreamer Agent. Then the Scene Dreamer Agent generates a new image Ii+1. This reflective165

loop mitigates hallucinations and goal inconsistencies in image outputs of the Scene Dreamer166

Agent. Finally, the resulting scene images Ii+1 can be converted into depth maps Pi+1 using167

Depth-Anything [36], allowing flexible support for different inputs from low-level models.168

In robotic manipulation tasks, we concentrate on the object of interest; accordingly, our generated169

images are object-centric. Although image-generation models may introduce inconsistencies in170

background elements, we disregard these artifacts and concentrate solely on the target object. To171

ensure a clean, focused representation for the low-level policy, we use Grounded SAM [56] to172

segment out the object of interest.173

3.4 Low-level Policy174

In our framework, the high-level model provides the low-level policy with both the current observation175

Oi = (Ii,Pi) and the target observation Oi+1 = (Ii+1,Pi+1), forming the complete set of available176

inputs. The low-level policy may then select any non-empty subset of these observations as its input.177

Our framework is adaptive to different low-level policies—any policy that can operate on these178

inputs can be seamlessly integrated. Specifically, as an instantiation of the low-level policy of our179

framework, we employ the Grasping+Planning approach, which comprises three core components:180

Point Cloud Registration, a Grasping Module, and a Motion Planning Module.181

Point Cloud Registration. We adopt GeoAware-SC [57] as our principal framework for point-cloud182

registration, exploiting its geometry-aware semantic correspondence module to establish dense, per-183

pixel matches between the initial and subgoal images. Concurrently, we apply Depth-Anything [36]184

to both views to infer high-resolution depth maps. To delineate object extents within both scenes,185

we integrate Grounded SAM [56], generating robust segmentation masks for all salient entities.186

Finally, given the fused semantic correspondences and their associated metric depths, we first lift the187

depth into 3d point clouds and employ the Umeyama algorithm [58] to estimate the optimal rigid188

transformation that aligns the initial and subgoal configurations.189

Grasping Module. Our low-level policy framework employs pre-trained GraspNet [59] as its190

grasping module, which takes a point cloud input and generates top-K grasp poses in the camera191

frame in an end-to-end manner. For implementation, we first use Grounded SAM [56] to generate192
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masks and segment target object points from the original point cloud. We then filter the GraspNet-193

generated poses, keeping only those within a distance threshold of these target points, and select the194

one with the highest score.195

Motion Planning Module. Our motion planning strategies differ between simulation and real-world196

execution. In the simulated environment, we leverage a sample-based motion planning module built197

in the simulator, which can interpolate trajectories from the initial to the target pose. [TODO]198

4 Experiment199

4.1 Experimental Setup200
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Figure 3: Experiment setup in simulation and real world.

Simulation. Simulation experiments were carried out in RLBench [60] using a Franka Emika Panda201

7-DoF arm and several RGB-D cameras. The robot arm is fixed to the tabletop, and the objects are202

randomly placed on the table. At the beginning of every trial, no objects are held.203

Some typical robot manipulation tasks in RLBench are selected. In Table 1 and Table 2, Tasks204

1–4 correspond to OpenWineBottle, TakePlateOffColoredDishRack, TakeFrameOffHanger, and205

PickUpCups, respectively(Figure 3a). To ensure consistency with the baselines, we assign each206

RLBench task a random seed from 1 to 5, corresponding to five different arrangements for the task.207

For each seed, we conduct 10 trials, resulting in a total of 50 runs for each task.208

All simulations ran on a single NVIDIA A100 GPU with 40 GB of memory. Executing our low-level209

policy for one task requires approximately 3 minutes, and generating subgoal images and point clouds210

with the Reflective World Model takes about ten minutes.211

Real World. Our real-world experimental setup, as depicted in Figure 3b, comprises a 7-DoF212

UFACTORY X-ARM 7 and an Orbbec Femto Bolt RGB-D camera. At the start of each trial, the213

robot does not grasp any object. We evaluate our pipeline on two real-world robotic manipulation214

tasks. 1)Move the tomato into the pan. 2)Take the plate off the rack.215

Our real-world experiments were conducted on a single NVIDIA RTX 4090 with 24 GB of memory.216

4.2 Baselines217

Representative methods from different paradigms are selected as our baselines.218

• For cross-paradigm comparison, we adopt the end-to-end OpenVLA [14] approach as a219

baseline.220

• For intra-paradigm comparisons, our baselines are SuSIE [18], which leverages a pre-trained221

image-editing model.222

We also compare various high-level world models and low-level policies within our framework.223
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• For world models, we compare GPT-4o [61], DALL·E 3 [62], and Gemini 2.5 Pro [63] for224

their image-generation performance as well as Sora [64, 65] for video generation.225

• For zero-shot low-level policies, we compare our Grasping+Planning method with the226

Octo [66] foundation model that conditions on both initial and goal images.227

Neither the baselines nor our method undergoes any additional training in RLBench or on real-world228

setups; all comparisons are conducted under zero-shot settings.229

Table 1: Cross-paradigm and intra-paradigm experiment results in simulation

Method Task1 Task2 Task3 Task4 Average Success Rate

OpenVLA 0 / 50 0 / 50 0 / 50 0 / 50 0%
SUSIE 0 / 50 0 / 50 0 / 50 0 / 50 0%
Ours 10 / 50 20 / 50 10 / 50 30 / 50 35%

Table 2: Zero-shot low-level policy evaluation results in simulation

Method Task1 Task2 Task3 Task4 Average Success Rate

Octo 0 / 50 0 / 50 0 / 50 0 / 50 0%
Grasping+Planning 10 / 50 20 / 50 10 / 50 30 / 50 35%

4.3 Cross-Paradigm Comparison230

Table 1 presents the results of our cross-paradigm and intra-paradigm evaluations. As described231

in 4.1, each method was tested on 50 trials for the RLBench tasks OpenWineBottle, TakePlateOffCol-232

oredDishRack, and PickUpCups. In the table, results are reported as "number of successes/number of233

trials", and the rightmost column shows the average success rate across tasks.234

For the end-to-end OpenVLA approach, the average success rate was 0%, indicating its inability to235

execute RLBench tasks in a zero-shot setting. This underscores their limited ability to generalize,236

making it challenging to transfer to unseen scenes and tasks. Moreover, their fully integrated, closed-237

box design offers no observable internal states, preventing us from pinpointing the exact causes of238

failure.239

4.4 Intra-Paradigm Comparison240

For the hierarchical models SuSIE, the average success rates on RLBench were 0%, demonstrating241

that they struggle to complete these tasks in a zero-shot setting. For SuSIE, we observed severe242

hallucinations in its predicted images (see Fig. 4), making it impossible to generate correct goal243

images. For example, in the TakePlateOffColoredDishRack task, the generated image is completely244

different from the original image. Consequently, its low-level policy lacked reliable targets and failed245

to complete the task.246

By contrast, the image generation world model in our framework produces more accurate future247

images that can effectively guide the zero-shot low-level policy (see Fig. 4). The results in Table 1248

demonstrate that our framework achieves strong generalization, completing manipulation tasks249

without any additional training.250

4.5 Image-Generation World Model Comparison251

We compared several widely used large multimodal image-generation models. As illustrated in252

Figure 5, the leftmost panel shows the initial input image. We provided each model with the same253

subgoal description and conducted a qualitative comparison of their generated images. The top row254

illustrates the generated simulation images for the subgoal "Take Plate Off Colored Dish Rack." The255

bottom row illustrates the generated real-world images for the subgoal "Move the tomato upwards."256
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Figure 4: Intra-Paradigm Comparison of generated future images.

We focused exclusively on the correctness of the target object’s placement, without considering the257

consistency of other scene elements.258

We observed that GPT-4o’s outputs often exhibit stylistic variation while still positioning the object259

at the intended location. Gemini preserves the original style more faithfully, yet tends to render260

multiple copies of the target object. The video-generation model Sora suffers from pronounced261

hallucinations, resulting in drastic scene alterations and poor temporal coherence. Lastly, DALL·E 3262

demonstrates limited understanding of scene structure and spatial relationships, resulting in incorrect263

object placements relative to the environment.264

4.6 Zero-shot Low-level Policy Comparison265

To compare low-level policies, we evaluated Octo, which takes both the current and predicted266

future images as input and outputs the actions needed to move the robot toward the goal view. Our267

experiments show that Octo is unable to zero-shot generalize to the Franka manipulator in RLBench,268

resulting in task failures.269

In contrast, our Grasping+Planning approach achieved a success rate of 35%, surpassing Octo. This270

demonstrates that the Grasping+Planning module is capable of zero-shot generalization. Most failures271

in this approach result from the GraspNet module’s inability to generate a successful grasp, leading272

to task failure.273

5 Limitation and Future Work274

Although the World4Omni framework can execute a variety of robotic manipulation tasks in a zero-275

shot, cross-embodiment fashion, it makes several trade-offs to achieve this level of generalization.276

Using the large pre-trained image generation model improves generalization, but it sometimes fails to277

maintain spatial accuracy, making precise operations such as insertion challenging. Inconsistencies278
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Figure 5: Image generation world model comparison.

in the generated images further complicate execution, and occlusions from the gripper or robot279

arm impede point-cloud matching, making closed-loop control difficult. Moreover, the foundation280

grasping module struggles to perform functional grasps on articulated and deformable objects.281

Although high-level models can generate reasonable future images, the limitations of the low-level282

policy prevent these tasks from being completed successfully. These findings highlight the need for283

future research to develop more powerful and general-purpose low-level foundation models.284

6 Conclusion285

In this work, we introduce World4Omni, a hierarchical robot manipulation framework that uses286

images as intermediate representations. The framework uses a Reflective World Model to generate287

future scene images and point clouds, where a VLM provides reflective feedback to refine the image288

quality produced by the pre-trained image-generation model. A zero-shot low-level policy then289

consumes current and predicted future images (or their corresponding point clouds) to produce robot290

actions without any additional training. Our cross-paradigm and intra-paradigm evaluations show that291

World4Omni surpasses representative methods in zero-shot generalization. Moreover, we achieve292

success in both simulation and real-world settings without any additional training, demonstrating293

strong generalization and cross-embodiment capabilities. We demonstrate that, by using images294

generated by foundation models as intermediate representations and executing low-level policies295

with no additional training, robots can achieve both strong generalization and cross-embodiment296

across diverse manipulation tasks. This result points the field toward a promising path for realizing297

general-purpose embodied intelligence.298
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NeurIPS Paper Checklist512

1. Claims513

Question: Do the main claims made in the abstract and introduction accurately reflect the514

paper’s contributions and scope?515

Answer: [Yes]516

Justification: Section 1.517

Guidelines:518

• The answer NA means that the abstract and introduction do not include the claims519

made in the paper.520

• The abstract and/or introduction should clearly state the claims made, including the521

contributions made in the paper and important assumptions and limitations. A No or522

NA answer to this question will not be perceived well by the reviewers.523

• The claims made should match theoretical and experimental results, and reflect how524

much the results can be expected to generalize to other settings.525

• It is fine to include aspirational goals as motivation, as long as it is clear that these526

goals are not attainable by the paper.527

2. Limitations528

Question: Does the paper discuss the limitations of the work performed by the authors?529

Answer: [Yes]530

Justification: Section 5.531

Guidelines:532

• The answer NA means that the paper has no limitations, while the answer No means533

that the paper has limitations, but those are not discussed in the paper.534

• The authors are encouraged to create a separate "Limitations" section in their paper.535

• The paper should point out any strong assumptions and how robust the results are to536

violations of these assumptions (e.g., independence assumptions, noiseless settings,537

model well-specification, asymptotic approximations only holding locally). The authors538

should reflect on how these assumptions might be violated in practice and what the539

implications would be.540

• The authors should reflect on the scope of the claims made, e.g., if the approach were541

only tested on a few datasets or with a few runs. In general, empirical results often542

depend on implicit assumptions, which should be articulated.543

• The authors should reflect on the factors that influence the performance of the approach.544

For example, a facial recognition algorithm may perform poorly when image resolution545

is low or images are taken in low lighting. Or a speech-to-text system might not be546

used reliably to provide closed captions for online lectures because it fails to handle547

technical jargon.548

• The authors should discuss the computational efficiency of the proposed algorithms549

and how they scale with dataset size.550

• If applicable, the authors should discuss possible limitations of their approach to551

address problems of privacy and fairness.552

• While the authors might fear that complete honesty about limitations might be used by553

reviewers as grounds for rejection, a worse outcome might be that reviewers discover554

limitations that aren’t acknowledged in the paper. The authors should use their best555

judgment and recognize that individual actions in favor of transparency play an impor-556

tant role in developing norms that preserve the integrity of the community. Reviewers557

will be specifically instructed not to penalize honesty concerning limitations.558

3. Theory assumptions and proofs559

Question: For each theoretical result, does the paper provide the full set of assumptions and560

a complete (and correct) proof?561

Answer: [NA]562

15



Justification: The paper does not include theoretical results.563

Guidelines:564

• The answer NA means that the paper does not include theoretical results.565

• All theorems, formulas, and proofs in the paper should be numbered and cross-566

referenced.567

• All assumptions should be clearly stated or referenced in the statement of any theorems.568

• The proofs can either appear in the main paper or the supplemental material. However,569

if they appear in the supplemental material, the authors are encouraged to provide a570

short proof sketch to provide intuition.571

• Inversely, any informal proof provided in the core of the paper should be complemented572

by formal proofs provided in the appendix or supplemental material.573

• Theorems and Lemmas that the proof relies upon should be properly referenced.574

4. Experimental result reproducibility575

Question: Does the paper fully disclose all the information needed to reproduce the main ex-576

perimental results of the paper to the extent that it affects the main claims and/or conclusions577

of the paper (regardless of whether the code and data are provided or not)?578

Answer: [Yes]579

Justification: Section 3.580

Guidelines:581

• The answer NA means that the paper does not include experiments.582

• If the paper includes experiments, a no answer to this question will not be perceived583

well by the reviewers: Making the paper reproducible is important, regardless of584

whether the code and data are provided or not.585

• If the contribution is a dataset and/or model, the authors should describe the steps taken586

to make their results reproducible or verifiable.587

• Depending on the contribution, reproducibility can be accomplished in various ways.588

For example, if the contribution is a novel architecture, describing the architecture fully589

might suffice, or if the contribution is a specific model and empirical evaluation, it may590

be necessary to either make it possible for others to replicate the model with the same591

dataset, or provide access to the model, in general. Releasing code and data is often a592

good way to accomplish this. Still, reproducibility can also be provided via detailed593

instructions for how to replicate the results, access to a hosted model (e.g., in the case594

of a large language model), releasing of a model checkpoint, or other means that are595

appropriate to the research performed.596

• While NeurIPS does not require releasing code, the conference does require all submis-597

sions to provide some reasonable avenue for reproducibility, which may depend on the598

nature of the contribution. For example599

(a) If the contribution is primarily a new algorithm, the paper should make it clear how600

to reproduce that algorithm.601

(b) If the contribution is primarily a new model architecture, the paper should describe602

the architecture clearly and fully.603

(c) If the contribution is a new model (e.g., a large language model), then there should604

either be a way to access this model for reproducing the results or a way to reproduce605

the model (e.g., with an open-source dataset or instructions for how to construct606

the dataset).607

(d) We recognize that reproducibility may be tricky in some cases, in which case608

authors are welcome to describe the particular way they provide for reproducibility.609

In the case of a closed-source model, access to the model may be limited in some610

way (e.g., to registered users). Still, it should be possible for other researchers to611

have some path to reproducing or verifying the results.612

5. Open access to data and code613

Question: Does the paper provide open access to the data and code, with sufficient instruc-614

tions to faithfully reproduce the main experimental results, as described in the supplemental615

material?616
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Answer: [Yes]617

Justification: See supplemental materials.618

Guidelines:619

• The answer NA means that the paper does not include experiments requiring code.620

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/621

public/guides/CodeSubmissionPolicy) for more details.622

• While we encourage the release of code and data, we understand that this might not be623

possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not624

including code, unless this is central to the contribution (e.g., for a new open-source625

benchmark).626

• The instructions should contain the exact command and environment needed to re-627

produce the results. See the NeurIPS code and data submission guidelines (https:628

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.629

• The authors should provide instructions on data access and preparation, including how630

to access the raw data, preprocessed data, intermediate data, and generated data.631

• The authors should provide scripts to reproduce all experimental results for the new632

proposed method and baselines. If only a subset of experiments are reproducible, they633

should state which ones are omitted from the script and why.634

• At submission time, to preserve anonymity, the authors should release anonymized635

versions (if applicable).636

• Providing as much information as possible in supplemental material (appended to the637

paper) is recommended, but including URLs to data and code is permitted.638

6. Experimental setting/details639

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-640

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the641

results?642

Answer: [Yes]643

Justification: Section 4.644

Guidelines:645

• The answer NA means that the paper does not include experiments.646

• The experimental setting should be presented in the core of the paper to a level of detail647

that is necessary to appreciate the results and make sense of them.648

• The full details can be provided either with the code, in the appendix, or as supplemental649

material.650

7. Experiment statistical significance651

Question: Does the paper report error bars suitably and correctly defined, or other appropriate652

information about the statistical significance of the experiments?653

Answer: [No]654

Justification: For robotic manipulation tasks, performance is typically evaluated solely by655

task success, without reporting error bars or other measures of uncertainty.656

Guidelines:657

• The answer NA means that the paper does not include experiments.658

• The authors should answer "Yes" if the results are accompanied by error bars, confi-659

dence intervals, or statistical significance tests, at least for the experiments that support660

the main claims of the paper.661

• The factors of variability that the error bars are capturing should be clearly stated (for662

example, train/test split, initialization, random drawing of some parameter, or overall663

run with given experimental conditions).664

• The method for calculating the error bars should be explained (closed form formula,665

call to a library function, bootstrap, etc.)666

• The assumptions made should be given (e.g., normally distributed errors).667
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• It should be clear whether the error bar is the standard deviation or the standard error668

of the mean.669

• It is OK to report 1-sigma error bars, but one should state it. The authors should670

preferably report a 2-sigma error bar rather than state that they have a 96%671

• For asymmetric distributions, the authors should be careful not to show in tables or672

figures symmetric error bars that would yield results that are out of range (e.g., negative673

error rates).674

• If error bars are reported in tables or plots, the authors should explain in the text how675

they were calculated and reference the corresponding figures or tables in the text.676

8. Experiments compute resources677

Question: For each experiment, does the paper provide sufficient information on the com-678

puter resources (compute workers, memory, time of execution) needed to reproduce the679

experiments?680

Answer: [Yes]681

Justification: Section 4.1.682

Guidelines:683

• The answer NA means that the paper does not include experiments.684

• The paper should indicate the compute workers’ CPU or GPU, internal cluster, or cloud685

provider, including relevant memory and storage.686

• The paper should provide the amount of compute required for each of the individual687

experimental runs, as well as estimate the total compute.688

• The paper should disclose whether the full research project required more computing689

than the experiments reported in the paper (e.g., preliminary or failed experiments that690

didn’t make it into the paper).691

9. Code of ethics692

Question: Does the research conducted in the paper conform, in every respect, with the693

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?694

Answer: [Yes]695

Justification: The research conforms to the NeurIPS Code of Ethics.696

Guidelines:697

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.698

• If the authors answer No, they should explain the special circumstances that require a699

deviation from the Code of Ethics.700

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-701

eration due to laws or regulations in their jurisdiction).702

10. Broader impacts703

Question: Does the paper discuss both potential positive societal impacts and negative704

societal impacts of the work performed?705

Answer: [No]706

Justification: This work is not related to any private or personal data, and there are no707

explicit negative social impacts.708

Guidelines:709

• The answer NA means that there is no societal impact of the work performed.710

• If the authors answer NA or No, they should explain why their work has no societal711

impact or why the paper does not address societal impact.712

• Examples of negative societal impacts include potential malicious or unintended uses713

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations714

(e.g., deployment of technologies that could make decisions that unfairly impact specific715

groups), privacy considerations, and security considerations.716
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• The conference expects that many papers will be foundational research and not tied717

to particular applications, let alone deployments. However, if there is a direct path to718

any negative applications, the authors should point it out. For example, it is legitimate719

to point out that an improvement in the quality of generative models could be used to720

generate deepfakes for disinformation. On the other hand, it is not necessary to point721

out that a generic algorithm for optimizing neural networks could enable people to722

train models that generate Deepfakes faster.723

• The authors should consider possible harms that could arise when the technology is724

being used as intended and functioning correctly, harms that could arise when the725

technology is being used as intended but gives incorrect results, and harms following726

from (intentional or unintentional) misuse of the technology.727

• If there are negative societal impacts, the authors could also discuss possible mitigation728

strategies (e.g., gated release of models, providing defenses in addition to attacks,729

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from730

feedback over time, improving the efficiency and accessibility of ML).731

11. Safeguards732

Question: Does the paper describe safeguards that have been put in place for the responsible733

release of data or models that have a high risk for misuse (e.g., pretrained language models,734

image generators, or scraped datasets)?735

Answer: [No]736

Justification: OpenAI has published detailed safety documentation for both the language-737

only and multimodal models used in the research, explicitly outlining the safeguards applied738

before any public release.739

For GPT-4o: https://openai.com/index/gpt-4o-system-card/740

For GPT-o4-mini-high: https://openai.com/index/o3-o4-mini-system-card/741

Guidelines:742

• The answer NA means that the paper poses no such risks.743

• Released models that have a high risk for misuse or dual-use should be released with744

necessary safeguards to allow for controlled use of the model, for example, by requiring745

that users adhere to usage guidelines or restrictions to access the model or implementing746

safety filters.747

• Datasets that have been scraped from the Internet could pose safety risks. The authors748

should describe how they avoided releasing unsafe images.749

• We recognize that providing effective safeguards is challenging, and many papers do750

not require this. Still, we encourage authors to take this into account and make a751

best-faith effort.752

12. Licenses for existing assets753

Question: Are the creators or original owners of assets (e.g., code, data, models) used in754

the paper properly credited, and are the license and terms of use explicitly mentioned and755

properly respected?756

Answer: [Yes]757

Justification: Yes, we credited them in appropriate ways. And the licenses are below:758

OpenAI: https://openai.com/policies/row-terms-of-use/759

GraspNet: [59]760

GeoAware: [57]761

SAM2: https://github.com/facebookresearch/sam2/blob/main/LICENSE762

Grounded-SAM-2: https://github.com/IDEA-Research/Grounded-SAM-2/blob/763

main/LICENSE764

cuRoBo: https://github.com/NVlabs/curobo/blob/main/LICENSE765

Guidelines:766

• The answer NA means that the paper does not use existing assets.767

• The authors should cite the original paper that produced the code package or dataset.768
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• The authors should state which version of the asset is used and, if possible, include a769

URL.770

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.771

• For scraped data from a particular source (e.g., website), the copyright and terms of772

service of that source should be provided.773

• If assets are released, the license, copyright information, and terms of use in the774

package should be provided. For popular datasets, paperswithcode.com/datasets775

has curated licenses for some datasets. Their licensing guide can help determine the776

license of a dataset.777

• For existing datasets that are re-packaged, both the original license and the license of778

the derived asset (if it has changed) should be provided.779

• If this information is not available online, the authors are encouraged to reach out to780

the asset’s creators.781

13. New assets782

Question: Are new assets introduced in the paper well documented, and is the documentation783

provided alongside the assets?784

Answer: [NA]785

Justification: The paper does not release new assets.786

Guidelines:787

• The answer NA means that the paper does not release new assets.788

• Researchers should communicate the details of the dataset/code/model as part of their789

submissions via structured templates. This includes details about training, license,790

limitations, etc.791

• The paper should discuss whether and how consent was obtained from people whose792

asset is used.793

• At submission time, remember to anonymize your assets (if applicable). You can either794

create an anonymized URL or include an anonymized zip file.795

14. Crowdsourcing and research with human subjects796

Question: For crowdsourcing experiments and research with human subjects, does the paper797

include the full text of instructions given to participants and screenshots, if applicable, as798

well as details about compensation (if any)?799

Answer: [NA]800

Justification: The paper does not involve crowdsourcing nor research with human subjects.801

Guidelines:802

• The answer NA means that the paper does not involve crowdsourcing nor research with803

human subjects.804

• Including this information in the supplemental material is fine. Still, if the main805

contribution of the paper involves human subjects, then as much detail as possible806

should be included in the main paper.807

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,808

or other labor should be paid at least the minimum wage in the country of the data809

collector.810

15. Institutional review board (IRB) approvals or equivalent for research with human811

subjects812

Question: Does the paper describe potential risks incurred by study participants, whether813

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)814

approvals (or an equivalent approval/review based on the requirements of your country or815

institution) were obtained?816

Answer: [NA]817

Justification: The paper does not involve crowdsourcing nor research with human subjects.818

Guidelines:819
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• The answer NA means that the paper does not involve crowdsourcing nor research with820

human subjects.821

• Depending on the country in which research is conducted, IRB approval (or equivalent)822

may be required for any human subjects research. If you obtained IRB approval, you823

should clearly state this in the paper.824

• We recognize that the procedures for this may vary significantly between institutions825

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the826

guidelines for their institution.827

• For initial submissions, do not include any information that would break anonymity (if828

applicable), such as the institution conducting the review.829

16. Declaration of LLM usage830

Question: Does the paper describe the usage of LLMs if it is an important, original, or831

non-standard component of the core methods in this research? Note that if the LLM is used832

only for writing, editing, or formatting purposes and does not impact the core methodology,833

scientific rigor, or originality of the research, the declaration is not required.834

Answer: [Yes]835

Justification: Section 3.2.836

Guidelines:837

• The answer NA means that the core method development in this research does not838

involve LLMs as any important, original, or non-standard components.839

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)840

for what should or should not be described.841
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